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ABSTRACT 

Video networks is an emerging interdisciplinary field with significant and exciting scientific and technological 
challenges. It has great promise in solving many real-world problems and enabling a broad range of applications, 
including smart homes, video surveillance, environment and traffic monitoring, elderly care, intelligent environments, 
and entertainment in public and private spaces. This paper provides an overview of the design of a wireless video 
network as an experimental environment, camera selection, hand-off and control, anomaly detection. It addresses 
challenging questions for individual identification using gait and face at a distance and present new techniques and their 
comparison for robust identification. 
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1. INTRODUCTION 

Sensor networks has been a very active area of research in recent years. However, most of the sensors used in the 
development of these networks have been local and nonimaging sensors such as acoustics, seismic, vibration, 
temperature, humidity, etc. The development of emerging video sensor networks poses its own set of unique challenges, 
including high bandwidth and low latency requirements for real-time processing and control. For example, the cameras in 
a network can cooperate with each other and perform various tasks in a collaborative manner. Multiple cameras enable us 
to have different views of the same object at the same time, such that we can choose one or some of them to monitor a 
given environment. This helps to solve the occlusion problem to some extent, as long as the field-of-views (FOVs) of  
cameras have some overlap. 

In Section 2 we present a systematic approach for the design, implementation, and evaluation of a large-scale, 
software reconfigurable wireless camera network, suitable for a variety of practical real-time applications. We take into 
consideration issues related to the hardware, software, control, architecture, network connectivity, performance 
evaluation, and data processing strategies for the network. We perform multi-objective optimization on settings such as 
video resolution and compression quality to provide insight into the performance trade-offs when configuring such a 
network. 

One of the most basic tasks in a video network is the tracking of objects, which requires mechanisms to select a 
camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In 
Section 3, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. 
We consider geometry, statistics, and game theory-based approaches and provide both theoretical and experimental 
comparison using centralized and distributed computational models.  

Most existing methods that used the human actions or trajectories to analyze the human activity assume 
overlapping field-of-views, In Section 4 we use the appearance and travel time-based human activity classification in the 
camera network of non-overlapping field-of-views. The mixture of Gaussian-based appearance similarity model 
incorporates the appearance variance between different cameras to address changes in varying lighting conditions. To 
address the problem of limited labeled training data, we propose the use of semi-supervised Expectation-Maximization 
algorithm for activity classification.  

It has been found to be difficult to recognize a person from arbitrary views in changing environmental 
conditions when a non-cooperative subject is walking at a distance. Some of the challenges include low resolution of the 
video from single/multiple cameras, changing pose of the subject and uncontrolled illumination conditions. In section 5 
we address the problems associated with recognizing people at a distance using side face and gait. Finally in Section 6 we 
provide the conclusions of the paper. 

2. VIDEOWEB – DESIGN OF A WIRELESS NETWORK OF VIDEO CAMERAS 

We describe the development of a new laboratory called VideoWeb to facilitate research in processing and understanding 
videos in a wireless environment. While research into large scale sensor networks has been carried out for various 
applications, the idea of massive video sensor networks consisting of cameras connected over a wireless network is 



largely new and relatively unexplored [1]. The VideoWeb laboratory [2] entails constructing a robust network 
architecture for a large number of components, including wireless routers and bridges, video processing servers, database 
servers, and the video cameras themselves. Hardware and equipment selection needs to take into account durability, 
performance, and cost. In addition, VideoWeb requires a number of software applications including those for data 
recording, video analysis, camera control, event recognition, anomaly detection, and an integrated user interface. 
Challenges for the design of VideoWeb include creating a  wireless network robust enough to simultaneously support 
hundreds of high-bandwidth video cameras at their peak performance, providing power and connectivity to cameras, 
building a server farm capable of processing all the streaming data in real-time, implementing a low-latency control 
structure for camera and server control, and designing algorithms capable of real-time processing of video data. 

There are numerous “optimal” ways to configure a network. For instance, maximizing video resolution and 
quality may be paramount for biometrics, particularly in face recognition where a large number of pixels on the face is 
beneficial to identifying features. Surveillance and alarm systems, on the other hand, may find reliability more important. 
For instance, it may be more important that every moment is recorded with minimal skipping (not only for evidence in 
the event of an incident, but also because security applications often employ vision-based motion detection). Object 
tracking in turn, may benefit most by sacrificing resolution in exchange for a high sustained frame rate. Configuring the 
network may consist of changing camera parameters (e.g., resolution, compression) as well as physical network 
parameters (e.g., number of cameras per bridge, number of bridges per router, number of routers per square foot).The 
later is helpful in introducing a metric for minimizing labor and monetary cost. We define 5 metrics (resolution, 
compression, frame rate, standard deviation of frame rate and longest skip time between two complete frames) for 
measuring camera network performance.   

We use the concept of Pareto efficiency to define which configuration of parameters is “better” than another. 
While this does not always tell a user which configuration should be used for a particular application, it serves to reduce 
the large number of possible configurations by showing which of those are usually “inferior”; a user only has to consider 
a configuration from the (potentially) much smaller Pareto set rather than every possible combination. We have designed 
a software-reconfigurable architecture for a wireless network of a large number of video cameras and implemented a 
working system by building the servers, installing the cameras, writing the software, and configuring the network to 
support it. Further, we gained insight into configuring the network’s cameras by defining a set of metrics and discovering 
Pareto-efficient camera configurations by performing multi-objective optimization on a large volume of real data 
recorded by the system. The idea persists that if one has a camera network with 30FPS cameras, one will be able to 
obtain the said 30 frames per second regardless of network configuration or parameters. Though this may be true in a 
controlled test environment, the performance expectation should not be so optimistic for real-world implementations. 
Even using the most preferred Pareto-efficient configurations on a non-congested network, it is shown that frame rates 
will most certainly suffer and that tradeoffs must be made. In line with this confirmation is the need to emphasize that 
partial frames are important. Rather than having algorithms which assume that the data consists entirely of complete 
video frames (and are only capable of processing such frames), real time computer vision algorithms should take 
advantage of as much information as is available to them; a stream of partial frames which may only be missing the last 
few rows of data can still be tremendously useful for a number of applications. 

3. CAMERA SELECTION, HANDOFF AND CONTROL 

An object may be seen in several cameras and multiple cameras may be involved over long physical distances. Also we 
may need control of cameras to get a better view. Thus, we have to deal with the problems of camera selection, handoff 
and control. Camera handoff is the process of finding the next best camera to see the target object when it is leaving the 
FOV of the current camera which is being used to track it. This has been an active area of research and many approaches 
have been proposed. Some camera networks require switches (video matrix) to help monitor the scenes in different 
cameras. The control can be designed to switch among cameras intelligently. Both distributed and centralized systems are 
proposed. Some researchers provide hardware architecture design, some of which involve embedded smart cameras, 
while others focus on the software design for camera assignment and algorithm development.  

The research work in camera selection and handoff for a video network consisting of multiple cameras can be 
classified according to many different aspects, such as whether it is embedded /PC-based; distributed/centralized; 
calibration-needed/calibration-free; topology-based or topology-free; statistics-based/statistics-free, etc.  

Four key approaches for camera selection, handoff and control are shown in Table 1. They are chosen as typical 
approaches because these approaches cover both distributed systems and centralized systems. Although none of these 
approaches needs camera calibration, some of them do a geometry correspondence [6] while some do not [5, 7]. 
Approaches such as [4, 5] provide a more systematic approach to camera selection and handoff. 

Various experiments were performed – Case 1: 2 cameras 3 persons, indoor. Case 2: 3 cameras 5 persons, indoor. 
Case 3: 4 cameras 6 persons, outdoor. Table II and Figure 1 show that the game theoretic approach is more flexible to 
perform camera handoffs based on different criteria.  



We analyzed existing and emerging techniques for the camera selection and handoff problem. Pros and cons of 
distributed and centralized systems are discussed. Four selected approaches are discussed in detail. Both theoretical and 
experimental comparisons are provided for these approaches [4]. It is shown that the utility-based game theoretic approach 
is more flexible and has low computational cost. However, it is a centralized algorithm unlike the CSP approach and the 
fuzzy-based approach. The COR approach is not applicable when the scenario is complicated.  

 
TABLE I.  COMPARISON OF KEY APPROACHES FOR CAMERA SELECTION AND HANDOFF APPROACHES. 
 

 
 
 

TABLE II: ERROR RATES OF THE SLECTED APPROACHES. 

Approaches Pros Cons

Utility-based Game 
Theoretic Approach 
[3, 4] 

Provides a mathematical framework; 
Can deal with the cooperation and 
competition among cameras; Can 
perform camera selection based on 
user-supplied criteria; No need for 
overlapping FOVs. 

Communication among cameras is not involved, can 
be extended for distributed computation; The local 
utility has to be designed that will align with the 
global utility in a potential game. 

Co-occurrence-to- 
Occurrence Ratio 
Approach [6] 

Intuitive efficient approach; Acceptable 
results when there are few occlusions 
and few cameras and objects. 

Time consuming correspondence of point pairs; When 
correspondence fails or occlusion happens, there is 
handoff ambiguity and the error rate increases; 
Computing structure becomes complicated with the 
increase of  # of camera nodes/objects; FOVs have to 
be overlapped. 

Constraint 
Satisfaction Problem 
Approach [5] 

Provides a distributed system design; 
Camera nodes can cooperate by 
forming coalition groups; Conflicts 
among cameras are solved by the CSP; 
No requirement for overlapping FOVs. 

The backtracking approach is time consuming for 
solving the constraint satisfaction problem; Only 
simple constraints are provided; Only simulation (no 
real video) results are provided. 

Fuzzy-based 
Approach [7] 

Distributed approach; Camera state 
transition and handoff rules are both 
intuitive; No requirement for 
overlapping FOVs. 

Only simulation results are provided; Tracking 
has to be accurate; Not robust when occlusion 
happens; No guarantee for convergence in a 
large-scale network. 

 Utility-based COR CSP Fuzzy-based 
Case 1 3.86% 4.23% 3.92% 4.64% 
Case 2 4.98% 10.01% 6.33% 7.11% 
Case 3 7.89% 45.67% 12.96% 21.33% 

Figure 1.   Comparison for the number of iterations with a fixed number of cameras (10)  
and various numbers of the objects.



 
 

 
 

4. ANOMALOUS ACTIVITY CLASSIFICATION 

As the number of cameras grows, it is becoming humanly impossible to analyze a large number of video feeds 
effectively. Therefore, we need methods that can automatically analyze the human activities in the video sequences 
collected by a network of cameras. Suppose there are humans walking in the scene consisting of the conference room, the 
hallway, the patio and the doors to the stairs. Since the space is divided by the walls and rooms, the paths people can take 
are relatively constrained. Also, the travel times between the entry and exits of the key areas are relatively fixed 
depending on the characteristics of the pedestrians. The violation of the common paths and travel times constitutes the 
anomalous activities. For instance, there is someone taking the emergency exit of the conference room instead of the 
main door for convenience. It results in the unusual travel time between the conference room and the stairs much shorter 
than it is supposed to be. Another example is that someone climbs over the wall to circumvent the access control installed 
at the main entrance. In this case the object suddenly appears at the door of the conference room without previously being 
detected at the main entrance. Other examples includes: suspicious long stay in the conference room and the sudden 
disappearance of the subject after showing at the entrance which means that the subject might hide somewhere. All these 
human activities mentioned above can be categorized to four main types: break-in, stay, sudden 
appearance/disappearance and normal. Among them, the first three anomalous activities require further attention or 
human involvement.  

One possible way is to track the objects (humans) across the overlapping field-of-views (FOVs) of different 
cameras and determine the types of human activities based on the observed tracks and travel times. However, the 
assumption of overlapping FOVs requires a huge number of cameras to cover a large area. The data volume increases 
exponentially along with the equipment cost making such an idea impractical. On the contrary, non-overlapping cameras 
overseeing the entry/exits in the environment greatly reduce the complexity of the surveillance system. However, the data 
correspondence problem also arises since there are multiple objects moving in the space and there exist “blind” areas or 
“gaps” between the FOVs. 

We build upon these ideas to develop a framework for analyzing the activity patterns of a group of pedestrians 
given the inferred network topology and appearance similarity distribution [8, 9]. We use the appearance similarity and 
travel times observed from much fewer cameras with non-overlapping FOVs to classify the human activities into four 
different classes: normal, break-in, stay, and sudden appearance/disappearance. We employ  color histogram-based 
appearance similarity to establish the correspondence between departure and arrivals at different nodes, and use the 
statistical model of appearance similarity to incorporate the uncertainty and variance of appearances between different 
FOVs under varied lighting. Moreover, for a traditional learning-based classification scheme, sufficient labeled training 
data is the prerequisite for satisfactory classification performance. However, it is really expensive to manually label a 
large volume of video sequences. Thus, we have used a semi-supervised Expectation-Maximization (SS-EM) algorithm 
to classify the human activities  the limited labeled data. We use a mixture of Gaussian-based statistical model of 
appearance similarity for correspondence. The GMM parameters are learned on the labeled and unlabeled data by using 
the SS-EM algorithm. Then, in the testing phase, the estimated Gaussian mixture model is used by the naïve Bayes 
classifier for anomalous activity classification. 

5. INDIVIDUAL RECOGNITION AT A DISTANCE 

5.1. Face Recognition in Video Acquired at a Distance 

There is a growing interest in face recognition and identification for surveillance systems, information security, and 
access control applications. In many of the above scenarios, the distance between the objects and the cameras is quite 
large, which makes the quality of video usually low and face images quite small. Low resolution is one of the challenges 
in video-based face recognition. Enhancing low resolution (LR) images from the video sequence has been studied by 
many researchers in the past. Traditional approaches in this area first perform tracking in each frame and then use a 
super-resolution (SR) method for obtaining increased resolution of the imagery. This process does not pass on the 
benefits of the SR result to the tracking module and inhibits the entire system from reaching its maximum performance 
potential. However, in real applications, small size images not only make the recognition task more difficult, but also 
affect the accuracy of face tracking.  

We have developed an incremental super-resolution (ISR) technique where SR and tracking are linked together 
in a closed-loop system. We assume that a 3D generic model is available. The super-resolved texture that is fed back 
improves the accuracy of pose and illumination estimation, which, in turn, improves the SR result in subsequent frames. 
Unlike a traditional approach which treats registration and SR steps separately, our approach feeds the super-resolved 3D 
facial texture back to the tracking algorithm, thus increasing the overall quality of tracking and super-resolving the 
texture over time. The more accurate tracking, in turn, improves the output of the SR algorithm to acquire better SR 
texture. Our approach generates SR video by updating the super-resolved texture with the incoming frames. 



 
 

 
 

 Our experimental results demonstrate that our closed-loop approach can significantly improve the accuracy of 
motion estimation and the quality of SR results compared with traditional open-loop approaches. In various experiments 
[10, 11] we find that in spite of large changes of pose and lighting, the final super-resolved texture can reach a PSNR in 
the range of 26-29 dB, the tracking can achieve sub-pixel accuracy with a mean of 0.5 pixel and face recognition can 
improve over 10-20%. We can treat the entire face as a single unit or treat it in terms of its parts (eyes, lips, eyebrows, 
and rest of the face). Since we use 3D face model, our approach can integrate the information over multiple frames from 
a video sequence as parts of the face become visible from being invisible at the beginning.  

5.2 Gait-based human Recognition at a Distance in Video 

We have developed a representation, called Gait Energy Images (GEI) [12] to recognize individuals by their gait as 
observed in video. GEI is a spatio-temporal compact representation of gait in video. In this representation the entire gait 
sequence is divided into cycles according to gait frequency and phase information. GEI captures the major shapes of 
silhouettes and their changes over the gait cycle. Silhouettes in each frame can be obtained using a physically based 
approach for moving object detection [13, 14]. GEI accounts for human walking at different speeds. It  has several 
advantages over the gait representation of binary silhouette sequence. It is not sensitive to incidental silhouette errors in 
the individual frames. Moreover, with such a 2D template, we do not need to consider the time moment of each frame, 
and , therefore, the  incurred errors can be avoided. 

Given the preprocessed binary gait silhouette sequence in the complete cycle(s), the grey-level gait energy 
image (GEI) is obtained by averaging the normalized and aligned silhouette images in the gait cycle(s). Various 
dimensionality reduction techniques such as the Principal Component Analysis (PCA) and subspace methods can be used 
to develop a compact set of features from GEI  for gait-based individual human recognition. For example, we have used 
PCA and multi-discriminant analysis (MDA) and their various combinations for feature level fusion. A complete set of 
results on HumanID database, together with their comparison with the state-of-the art algorithms, is given in [12]. In the 
next subsection we combine gait with the side face for human recognition. 

5.3. Side Face and Gait Recognition at a Distance in Video  

A fusion system, which combines face and gait cues from a video sequence, is a promising approach to accomplish the 
task of human recognition at a distance. The general solution to analyze face and gait video data from arbitrary views is 
to estimate 3-D models. However, the problem of building reliable 3-D models for non-rigid face, with flexible neck and 
the articulated human body from low resolution video data remains a hard one. In recent years, integrated face and gait 
recognition approaches without resorting to 3-D models have achieved some success.  

The fusion of face and gait is promising in real world applications because of their individual characteristics. 
Compared with gait, face images are readily interpretable by humans, which allows people to confirm whether a 
biometrics system is functioning correctly, but the appearance of a face depends on many factors: incident illumination, 
head pose, facial expressions, moustache/beard, eyeglasses, cosmetics, hair style, weight gain/loss, aging, and so forth. 
Although gait images can be easily acquired from a distance, the gait recognition is affected by clothes, shoes, carrying 
status and specific physical condition of an individual. The fusion system is relatively more robust compared with the 
system that uses only one biometrics. For example, face recognition is more sensitive to low lighting conditions, whereas 
gait is more reliable under these conditions. Similarly, when the walker is carrying a heavy baggage or he/she is injured, 
the captured face information may contribute more than gait. 

We distinguish a side face from a face problem. A face refers to the outline of the shape of a face as seen from 
the side. A side face includes not only the outline of the side view of a face, but also the entire side view of eye, nose and 
mouth, possessing both shape and intensity information. Therefore, a side face has more discriminating power for 
recognition than a face profile. For side face, an Enhanced Side Face Image (ESFI), a higher resolution image compared 
with the image directly obtained from a single video frame, is constructed as the face template. For gait, the Gait Energy 
Image (GEI), which is used to characterize human walking properties, is generated as the gait template.  

We have developed several approaches that integrate information from side face and gait at the feature level and 
match score level to recognize non-cooperating individuals at a distance. Compared with the abundance of research work 
related to fusion at the match score level, fusion at the feature level is a relatively understudied problem because of the 
difficulties in practice. Multiple modalities may have incompatible feature sets and the relationship between different 
feature spaces may not be known. Moreover, the concatenated feature vector may lead to the problem of curse of 
dimensionality and it may contain noisy or redundant data, thus leading to a decrease in the performance of the classifier. 
However, pattern recognition and computer vision systems that integrate information at an early stage of processing are 
believed to be more effective than those systems that perform integration at a later stage. Therefore, while it is relatively 
difficult to achieve in practice, fusion at the feature level has drawn more attention in recent years. Among the existing 
research work, feature concatenation is the most popular feature level fusion methodology. Some of the schemes perform 
feature concatenation after dimensionality reduction while others perform feature concatenation before feature selection. 



 
 

 
 

In our new feature level fusion scheme [15, 16] we propose to fuse information from side face and gait for 
human recognition at a distance in a single camera scenario. Multiple Discriminant Analysis (MDA) is carried out after 
the concatenation of face and gait features using PCA based analysis. This allows the generation of better discriminating 
features and leads to the improved performance. Face features are extracted from Enhanced Side Face Image (ESFI), 
which integrates face information over multiple frames in video. Similarly, gait features are extracted from Gait Energy 
Images (GEI). The concatenation of face and gait features generates better discriminating features for improved 
recognition performance.  

The problem of curse of dimensionality is reduced since the feature vectors are of lower dimension than those in 
[8]. The problem of the curse of dimensionality is reduced in two ways: (a) PCA is used to transform high dimensional 
face and gait templates to low dimensional feature space; (b) synthetic features are generated based on all possible 
combinations of face and gait features from the same video sequence. 

The proposed scheme [15, 16] is tested using two comparative data sets to show the effect of changing clothes 
and face changing over time. Moreover, the proposed feature level fusion (PCA followed by concatenation of features 
and then MDA) is compared with the match score level fusion and another feature level fusion scheme (PCA, MDA and 
then the concatenation of features). The experimental results demonstrate that the synthetic features, encoding both side 
face and gait information, carry more discriminating power thn the individual biometrics features. The experimental 
results show that the proposed feature level fusion scheme [16] is effective for individual recognition in video. It 
outperforms the previously published fusion schemes at the match score level (Sum and Max rules) and the feature level 
[15] for face- and gait-based human recognition at a distance in video.  

6. CONCLUSIONS 

Video network is a significant emerging area of research for human and vehicle identification. There are many problems 
of interest in such a network: understanding human actions, 3D model building from videos of vehicles and faces, super-
resolution techniques to recognize people from a distance, optimal sensing and processing, building topological map of 
the environment by analyzing traffic patterns from non-overlapping cameras, detecting anomalous activity patterns, 
integrated analysis/synthesis and learning short/long term behavior [17]. 

We presented an overview of the design of a wireless video network and the problems of camera selection and 
handoff, anomaly detection and human recognition at a distance. Video-based human recognition at a distance remains a 
challenging problem for individual and multi-modal biometrics systems based on face, gait, side face and ear [18-20]. 
These biometrics can be used in both the low and high security scenarios and are of interest in networked applications. 
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